Molecular dynamics simulation of ionic mobility. I. Alkali metal cations in water at 25 C

نویسندگان

  • Song Hi Lee
  • Jayendran C. Rasaiah
چکیده

We describe a series of molecular dynamics simulations performed on model cation-water systems at 25 “C representing the behavior of Li+, Na+, K+, Rbf, and Cs+ in an electric field of 1.0 V/nm and in its absence. The TIP4P model was used for water and TIPS potentials were adapted for the ion-water interactions. The structure of the surrounding water molecules around the cations was found to be independent of the applied electric field. Some of the dynamic properties, such as the velocity and force autocorrelation functions of the cations, are also field independent. However, the mean-square displacements of the cations, their average drift velocities, and the distances traveled by them are field dependent. The mobilities of the cations calculated directly from the drift velocity or the distance traveled by the ion are in good agreement with each other and they are in satisfactory agreement with the mobilities determined from the mean-square displacement and the velocity autocorrelation function in the absence of the field. They also show the same trends with ionic radii that are observed experimentally; the magnitudes are, however, smaller than the experimental values in real water by almost a factor of 2. It is found that the water molecules in the first solvation shell around the small Li+ ion are stuck to the ion and move with it as an entity for about 190 ps, while the water molecules around the Na+ ion remain for 35 ps, and those around the large cations stay for 811 ps before significant exchange with the surroundings occurs. The picture emerging from this analysis is that of a solvated cation whose mobility is determined by its size as well as the static and dynamic properties of its solvation sheath and the surrounding water. The classical solventberg model describes the mobility of Li+ ions in water adequately but not those of the other ions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topological Analysis of Theoretical Charge Density of Alkali Metal Cations (LC, Na+, le)ICrown Ether (18e6) Complexes

The DO1(18c6)fi (MwLi. Na. K and I 8c6=18-crown-6) complexes have been chosen as the model systems toinvestigate the nature of chemical bonds between alkali metal cations and large mffitidentaie orgmnic ligands.The B3LYP/6-3I+G(d,p) level of calculation has been used for obtaining equilibrium geernetnes and p(r)functions (electron density distributions). By the aid of fundamental physical theor...

متن کامل

Carboxylate Ion Pairing with Alkali-Metal Ions for β-Lactoglobulin and Its Role on Aggregation and Interfacial Adsorption.

We report a combined experimental and computational study of the whey protein β-lactoglobulin (BLG) in different electrolyte solutions. Vibrational sum-frequency generation (SFG) and ellipsometry were used to investigate the molecular structure of BLG modified air-water interfaces as a function of LiCl, NaCl, and KCl concentrations. Molecular dynamics (MD) simulations and thermodynamic integrat...

متن کامل

The pH effect on complexation of Alkali metal cation by p-sulfonatocalix (4) arene in aqueous solution

The complexation of Alkali metal cations by the water-soluble p-sulfonic acid calix(4)arenewas thermodynamically characterized using spectrophotometeric data which are consistentwith the formation of a 1:1 complex resulting from electrostatic interactions between thesulfonato groups and alkali metal cations. In this study, we determined the formationconstants (log K) of the complexes and have c...

متن کامل

Dissolution and nucleation phenomena of salts in water. Molecular dynamic approaches and supporting solution X-ray diffraction measurements

Molecular dynamics (MD) simulations have been demonstrated to elucidate the dissolution and nucleation phenomena at a molecular level for a variety of alkali halide salts in water at 25 "C. Within 12 to 20 ps anions in the LiCI, NaCl and CsF crystals have dissolved, but dissolution of cations has not been observed within the same time period. For KCI, NaF, and KF crystals which have cations and...

متن کامل

AN NMR STUDY OF IONIC SOLVATION OF ALKALINE EARTH CATIONS WITH DIMETHYLSULFOXIDE IN NITROMETHANE SOLUTION

A proton NMR method for the determination of the solvation numbers of alkaline earth cations with dimethylsulfoxide (DMSO) in nitromethane as diluent is described. The method is based on the monitoring of the resonance frequency of DMSO protons as a function of DMSO to metal ion mole ratio while keeping the metal ion concentration constant. The average solvation number of cations at any...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999